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Abstract We investigate transverse electromagnetic waves propagating in a plasma influ-
enced by the gravitational field of the Schwarzschild-de Sitter black hole. Applying 3 + 1
spacetime split we derive the relativistic two-fluid equations to take account of gravitational
effects due to the event horizon and describe the set of simultaneous linear equations for
the perturbations. We use a local approximation to investigate the one-dimensional radial
propagation of Alfvén and high frequency electromagnetic waves. We derive the dispersion
relation for these waves and solve it for the wave number k numerically.

Keywords Two-fluid plasma · Alfvén and high frequency electromagnetic waves · Black
hole horizon · Cosmological constant

1 Introduction

Black holes are still mysterious [1]. Physicists are grappling the theory of black holes, while
astronomers are searching for real-life examples of black holes in the universe [2]. There
still exists no convincing observational data which can prove conclusively the existence of
black holes in the universe. Black holes, however, are not objects of direct observing. They
must be observed indirectly through the effects they exert on their environment. It is proved
that black holes exist on the basis of study of effects which they exert on their surroundings.

Black holes greatly affect the surrounding plasma medium (which is highly magnetized)
with their enormous gravitational fields. Hence plasma physics in the vicinity of a black hole
has become a subject of great interest in astrophysics. In the immediate neighborhood of a
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black hole general relativity applies. It is therefore of interest to formulate plasma physics
problems in the context of general relativity.

A covariant formulation of the theory based on the fluid equations of general relativity
and Maxwell’s equations in curved spacetime has so far proved unproductive because of
the curvature of four-dimensional spacetime in the region surrounding a black hole. Thorne,
Price, and Macdonald (TPM) [3–6] developed a method of a 3 + 1 formulation of general
relativity in which the electromagnetic equations and the plasma physics at least look some-
what similar to the usual formulations in flat spacetime while taking accurate account of
general relativistic effects such as curvature. In the TPM formulation, work connected with
black holes has been facilitated by replacing the hole’s event horizon with a membrane en-
dowed with electric charge, electrical conductivity, and finite temperature and entropy. The
membrane paradigm is mathematically equivalent to the standard, full general relativistic
theory of black holes so far as physics outside the event horizon is concerned. But the for-
mulation of all physics in this region turns out to be very much simpler than it would be
using the standard covariant approach of general relativity.

Buzzi et al. [7, 8], using the TPM formalism described a general relativistic version of
two-fluid formulation of plasma physics and investigated the nature of plasma waves (trans-
verse waves in [7], and longitudinal waves in [8]) near the horizon of the Schwarzschild
black hole. In this paper we apply the formalism of Buzzi et al. [7] to investigate the trans-
verse electromagnetic waves propagating in a plasma close to the Schwarzschild black hole
in the de Sitter (dS) space, called the Schwarzschild-de Sitter (SdS) black hole. The study is
interesting because of the presence of cosmological constant (�). There has been a renewed
interest in cosmological constant as it is found to be present in the inflationary scenario of
the early universe. In these scenario the universe undergoes a stage where it is geometrically
similar to dS space [9]. Among other things inflation has led to the cold dark matter. Ac-
cording to the cold dark matter theory, the bulk of the dark matter is in the form of slowly
moving particles (axions or neutralinos). If the cold dark matter theory proves correct, it
would shed light on the unification of forces [10, 11]. Comprehensive review works of the
cosmological constant or dark energy, including the observational evidence of it and the
problems associated with it, have been done by many authors [12–20].

In recent years, considerable attention has been concentrated on the study of black holes
in dS spaces. This is motivated, basically, by the following two aspects: first, several different
types of astrophysical observations indicate that our universe is in a phase of accelerating
expansion [21–46]. Associated with this acceleration is a positive cosmological constant.
Our universe therefore might approach a dS phase in the far future. Second, similar as the
AdS/CFT correspondence, an interesting proposal, the so-called dS/CFT correspondence,
has been suggested that there is a dual relation between quantum gravity on a dS space and
Euclidean conformal field theory (CFT) on a boundary of dS space [47–52]. In view of the
above reasons, our study of transverse wave propagation in relativistic two-fluid plasma in
the environment close to the event horizon of the SdS black hole is interesting. The result
we have obtained reduces to that of the Schwarzschild black hole [7] when the cosmological
constant vanishes.

This paper is organized as follows. In Sect. 2, we summarize the 3+1 formulation of gen-
eral relativity. In Sect. 3, we describe the nonlinear two-fluid equations expressing continu-
ity and conservation of energy and momentum. The two-fluids are coupled together through
Maxwell’s equations for the electromagnetic fields. In Sect. 4, we restrict one-dimensional
wave propagation in the radial z (Rindler coordinate system) direction, and linearize the
equations for wave propagation in Sect. 5 by giving a small perturbation to fields and fluid
parameters. We express the derivatives of the unperturbed quantities with respect to z. In



Int J Theor Phys (2009) 48: 1717–1735 1719

Sect. 6, we discuss the local or mean-field approximation used to obtain numerical solu-
tions for the wave dispersion relations. We describe the dispersion relation for the transverse
waves. We give the numerical procedure for determining the roots of the dispersion relation
in Sect. 7. In Sect. 8 we present the numerical solutions for the wave number k. Finally, in
Sect. 9, we present our remarks. We use units G = c = kB = 1.

2 Formalism in 3 + 1 Spacetime

In this section we apply TPM formulation to split the Schwarzschild-de Sitter black hole
spacetime, which is the solution of Einstein equations with a positive �(= 3/�2) term cor-
responding to a vacuum state spherical symmetric configuration. The metric of the spacetime
is asymptotically de Sitter and has the form

ds2 = gμνdxμdxν

= −�2dt2 + 1

�2
dr2 + r2(dθ2 + sin2 θdϕ2), (1)

where the metric function is

�2 = 1 − 2M

r
− r2

�2
, (2)

M being the mass of the black hole and the coordinates are defined such that −∞ ≤ t ≤ ∞,
r ≥ 0, 0 ≤ θ ≤ π , and 0 ≤ φ ≤ 2π . At large r , the metric (1) tends to the dS space limit.
The explicit dS case is obtained by setting M = 0 while the explicit Schwarzschild case is
obtained by taking the limit � → ∞. When �2 is replace by −�2, the metric (1) describes
an interesting nonrotating AdS black hole called the Schwarzschild Anti-de Sitter (SAdS)
black hole. The AdS black holes play a major role in the AdS/CFT correspondence [53–56]
and they have also received interest in the context of brane-world scenarios based on the
setup of Randall and Sundrum [57, 58].

The horizons of the SdS black hole are located at the real positive roots of �2(r) ≡
1

�2r
(r − rh)(r − rc)(r− − r) = 0, and there are more than one horizon if 0 < 
 < 1/27 where


 = M2/�2. The black hole (event) horizon rh and the cosmological horizon rc are located,
respectively, at

rh = 2M√
3


cos
π + ψ

3
, (3)

rc = 2M√
3


cos
π − ψ

3
, (4)

where

ψ = cos−1(3
√

3
). (5)

The negative root

r− = − 2M√
3


cos
ψ

3
(6)

has no physical meaning. In the limit 
 → 0, one finds that rh → 2M and rc → �, and it
is obvious that rc > rh, i.e., the event horizon is the smallest positive root. The spacetime is
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dynamic for r < rh and r > rc . The two horizons coincide: rh = rc = 3M (extremal), when

 = 1/27, and the spacetime then becomes the well known Nariai spacetime. Expanding rh

in terms of M with 
 < 1/27, we obtain

rh ≈ 2M

(
1 + 4M2

�2
+ · · ·

)
, (7)

that is, the event horizon of the SdS black hole is greater than the Schwarzschild event
horizon, rSch = 2M . For 
 > 1/27, the spacetime is dynamic for all r > 0, that is, the
metric (1) then represents not a black hole but an unphysical naked singularity at r = 0.

The hypersurfaces of constant universal time t define an absolute three-dimensional
space described by the metric

ds2 = gij dxidxj = 1

�2
dr2 + r2(dθ2 + sin2θdϕ2), (8)

where the indices i, j range over 1,2,3 and refer to coordinates in absolute space. The
fiducial observers (FIDOs), the observers at rest with respect to this absolute space, measure
their proper time τ using clocks that they carry with them and make local measurements of
physical quantities. Then all their measured quantities are defined as FIDO locally measured
quantities and all rates measured by them are measured using FIDO proper time. The FIDOs
use a local Cartesian coordinate system with unit basis vectors tangent to the coordinate lines

er = �
∂

∂r
, eθ̂ = 1

r

∂

∂θ
, eϕ̂ = 1

rsinθ

∂

∂ϕ
. (9)

For a spacetime viewpoint this set of orthonormal vectors also includes the basis vector for
the time coordinate, given by

e0̂ = d

dτ
= 1

α

∂

∂t
, (10)

where α is the lapse function (or redshift factor) defined by

α(r) ≡ dτ

dt
=

(
1 − 2M

r
− r2

�2

) 1
2

. (11)

The FIDO proper time τ functions as a local laboratory time, where the FIDOs have the role
of “local laboratories”. The coordinate time t slices spacetime in the way that the FIDOs
would do physically.

The lapse function α, which governs the ticking rates of clocks and redshifts, plays the
role of a gravitational potential. It also provides the gravitational acceleration felt by a FIDO
[3–6]:

a = −∇ lnα = − 1

α

(
M

r2
− r

�2

)
er̂ . (12)

The rate of change of any scalar physical quantity or any three-dimensional vector or tensor,
as measured by a FIDO, is defined by the derivative

D

Dτ
≡

(
1

α

∂

∂t
+ v · ∇

)
, (13)

v being the fluid velocity measured locally by a FIDO.
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3 Two-Fluid Equations in 3 + 1 Formalism

We consider two-component plasma such as an electron-positron plasma or electron-ion
plasma. The continuity equation for each of the fluid species in the 3 + 1 notation is

∂

∂t
(γsns) + ∇ · (αγsnsvs) = 0, (14)

where s is 1 for electrons and 2 for positrons (or ions). For a perfect relativistic fluid of
species s in three-dimensions, the energy density εs , the momentum density Ss , and stress-
energy tensor W

jk
s are given by

εs = γ 2
s (εs + Psv2

s ), Ss = γ 2
s (εs + Ps)vs , Wjk

s = γ 2
s (εs + Ps)v

j
s v

k
s + Psg

jk, (15)

where vs is the fluid velocity, ns is the number density, Ps is the pressure, and εs is the total
energy density defined by

εs = msns + Ps/(γg − 1), (16)

the gas constant γg being 4/3 as T → ∞ and 5/3 as T → 0.
The ion temperature profile is closely adiabatic and it approaches 1012 K near the horizon

[59]. Far from the event horizon, electron (positron) temperatures are essentially equal to the
ion temperatures. But the electrons closer to the horizon are progressively cooled to about
108−109 K by mechanisms such as multiple Compton scattering and synchrotron radiation.
Using the conservation of entropy one can express the equation of state in the form:

D

Dτ

(
Ps

n
γg
s

)
= 0, (17)

where D/Dτ = (1/α)∂/∂t + vs · ∇ . For a relativistic fluid, the full equation of state as
measured in the fluid’s rest frame, is given by [60, 61]:

ε = msns + msns

[
Ps

msns

− iH(1)′
2 (imsns/Ps)

H
(1)

2 (imsns/Ps)

]
, (18)

where the H
(1)

2 (x) are Hankel functions.
The fluid quantities in (15) take the following form in the electromagnetic field:

εs = 1

8π
(E2 + B2), Ss = 1

4π
E × B,

(19)

Wjk
s = 1

8π
(E2 + B2)gjk − 1

4π
(EjEk + BjBk).

Energy and momentum conservation equations are given by [3–5]

1

α

∂

∂t
εs = −∇ · Ss + 2a · Ss , (20)

1

α

∂

∂t
Ss = εsa − 1

α
∇ · (α ↔

Ws). (21)
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When the two-fluid plasma couples to the electromagnetic fields, Maxwell’s equations take
the following 3 + 1 form:

∇ · B = 0, (22)

∇ · E = 4πσ, (23)

∂B
∂t

= −∇ × (αE), (24)

∂E
∂t

= ∇ × (αB) − 4παJ, (25)

where the charge and current densities are respectively defined by

σ =
∑

s

γsqsns, J =
∑

s

γsqsnsvs . (26)

Using (16) and (22–25), the energy and momentum conservation equations (20) and (21)
can be rewritten for each species s in the form

1

α

∂

∂t
Ps − 1

α

∂

∂t
[γ 2

s (εs + Ps)] − ∇ · [γ 2
s (εs + Ps)vs]

+ γsqsnsE · vs + 2γ 2
s (εs + Ps)a · vs = 0, (27)

and

γ 2
s (εs + Ps)

(
1

α

∂

∂t
+ vs · ∇

)
vs + ∇Ps − γsqsns(E + vs × B)

+ vs

(
γsqsnsE · vs + 1

α

∂

∂t
Ps

)
+ γ 2

s (εs + Ps)[vs(vs · a) − a] = 0, (28)

respectively. Although these equations are valid in a FIDO frame, they reduce for α = 1
to the corresponding special relativistic equations [62] which are valid in a frame in which
both fluids are at rest. The transformation from the FIDO frame to the comoving (fluid)
frame involves a boost velocity, which is simply the freefall velocity onto the black hole,
given by

vff = (1 − α2)
1
2 . (29)

The relativistic Lorentz factor then becomes γboost ≡ (1 − v2
ff)

−1/2 = 1/α.
The two-fluid equations in SdS coordinates form the basis of the numerical procedure for

solving the linear two-fluid equations; but they cannot be evaluated analytically. However,
the Rindler coordinate system, in which space is locally Cartesian, provides a good approx-
imation to the SdS metric near the event horizon. Without the complication of explicitly
curved spatial three-geometries, the essential features of the horizon and the 3 + 1 split are
preserved.

The SdS metric (1) in Rindler coordinates is approximated by

ds2 = −α2dt2 + dx2 + dy2 + dz2, (30)

where

x = rh

(
θ − π

2

)
, y = rhϕ, z = 2rh�. (31)
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The standard lapse function in Rindler coordinates becomes α = z/2rh, where rh is the event
horizon of the black hole.

4 Radial Wave Propagation in One-Dimension

We consider one-dimensional wave propagation in the radial z direction. Introducing the
complex variables

vsz(z, t) = us(z, t), vs(z, t) = vsx(z, t) + ivsy(z, t),
(32)

B(z, t) = Bx(z, t) + iBy(z, t), E(z, t) = Ex(z, t) + iEy(z, t),

and setting

vsxBy − vsyBx = i

2
(vsB

∗ − v∗
s B),

(33)

vsxEy − vsyEx = i

2
(vsE

∗ − v∗
s E),

where the ∗ denotes the complex conjugate, one could write the continuity equation (14) in
the form

∂

∂t
(γsns) + ∂

∂z
(αγsnsus) = 0, (34)

and Poisson’s equation (23) as

∂Ez

∂z
= 4π(q1n1γ1 + q2n2γ2). (35)

From the ex̂ and eŷ components of (24) and (25), one could obtain

1

α

∂B

∂t
= −i

(
∂

∂z
− a

)
E, (36)

i
∂E

∂t
= −α

(
∂

∂z
− a

)
B − i4πeα(γ2n2v2 − γ1n1v1). (37)

Differentiating (37) with respect to t and using (36), we obtain

(
α2 ∂2

∂z2
+ 3α

2rh

∂

∂z
− ∂2

∂t2
+ 1

(2rh)2

)
E = 4πeα

∂

∂t
(n2γ2v2 − n1γ1v1). (38)

The transverse component of the momentum conservation equation is obtained from the ex̂

and eŷ components of (28) as follows:

ρs

Dvs

Dτ
= qsnsγs(E − ivsBz + iusB) − usvsρsa − vs

(
qsnsγsE · vs + 1

α

∂Ps

∂t

)
, (39)

where

E · vs = 1

2
(Ev∗

s + E∗vs) + Ezus,
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and ρs is the total energy density defined by

ρs = γ 2
s (εs + Ps) = γ 2

s (msns + �gPs) (40)

with �g = γg/(γg − 1).

5 Linearization

We apply perturbation method to linearize the equations derived in the preceding section.
We introduce the quantities

us(z, t) = uos(z) + δus(z, t), vs(z, t) = δvs(z, t),

ns(z, t) = nos(z) + δns(z, t), Ps(z, t) = Pos(z) + δPs(z, t),

(41)
ρs(z, t) = ρos(z) + δρs(z, t), E(z, t) = δE(z, t),

Bz(z, t) = Bo(z) + δBz(z, t), B(z, t) = δB(z, t),

where an applied magnetic field has been chosen to lie along the radial eẑ direction. The
relativistic Lorentz factor is also linearized such that

γs = γos + δγs, where γos = (
1 − u2

os

)− 1
2 , δγs = γ 3

osuos · δus . (42)

Near the event horizon the unperturbed radial velocity for each species as measured by a
FIDO along eẑ is assumed to be the freefall velocity so that

uos(z) = vff(z) = [1 − α2(z)] 1
2 . (43)

It follows, from the continuity equation (34), that

r2αγosnosuos = const. = r2
hαhγhnhuh,

where the values with a subscript h are the limiting values at the event horizon. The freefall
velocity at the event horizon becomes unity so that uh = 1. Since uos = vff, γos = 1/α; and
hence αγos = αhγh = 1. Also, because vff = (rh/r)1/2χ , the number density for each species
can be written as follows:

nos(z) = 1

χ4
nhsv

3
ff(z), (44)

where

χ =
(

1 − r3

rhrcr−

) 1
2
[

1 + rh

(
1

rc

+ 1

r−

)]− 1
2

. (45)

When �2 → ∞, (44) reduce to the Schwarzschild result [7]. The equation of state (17) and
(44) lead to write the unperturbed pressure in terms of the freefall velocity as

Pos(z) = 1

χ4γg
Phsv

3γg

ff (z). (46)
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Since Pos = kBnosTos , then with kB = 1 the temperature profile is

Tos(z) = 1

χ4(γg−1)
Thsv

3(γg−1)

ff (z). (47)

The unperturbed magnetic field, chosen to be in the radial z direction, is parallel to the
infall fluid velocity uos(z)eẑ for each fluid. It thus does not experience effects of spatial
curvature along with the infall fluid velocity. The magnetic field depends on the radial co-
ordinate r because of flux conservation. Since ∇ · Bo = 0, it follows that r2Bo(r) = const.,
from which one could obtain the unperturbed magnetic field in terms of the freefall velocity
as

Bo(z) = 1

χ4
Bhv

4
ff(z). (48)

Since

dvff

dz
= − α

2rh

1

vff
, (49)

we have

duos

dz
= − α

2rh

1

vff
,

dBo

dz
= − 4α

2rh

Bo

v2
ff

,

(50)
dnos

dz
= − 3α

2rh

nos

v2
ff

,
dPos

dz
= − 3α

2rh

γgPos

v2
ff

.

When the linearized variables from (41) and (42) are substituted into the continuity equa-
tion and products of perturbation terms are neglected, it follows that

γos

(
∂

∂t
+ uosα

∂

∂z
+ uos

2rh

+ γ 2
osα

duos

dz

)
δns +

(
α

∂

∂z
+ 1

2rh

)
(nosγosuos)

+ nosγ
3
os

[
uos

∂

∂t
+ α

∂

∂z
+ 1

2rh

+ α

(
1

nos

dnos

dz
+ 3γ 2

osuos

duos

dz

)]
δus = 0. (51)

The conservation of entropy, (17), on linearization, gives

δPs = γgPos

nos

δns. (52)

Then from the total energy density, (40), it follows that

δρs = ρos

nos

(
1 + γ 2

osγgPos

ρos

)
δns + 2uosγ

2
osρosδus, (53)

where ρos = γ 2
os(msnos + �gPos). Linearizing the transverse part of the momentum con-

servation equation, differentiating it with respect to t , and then substituting from (36), we
derive (

αuos

∂

∂z
+ ∂

∂t
− uos

2rh

+ iαqsγosnosBo

ρos

)
∂δvs

∂t

− αqsγosnos

ρos

(
αuos

∂

∂z
+ ∂

∂t
+ uos

2rh

)
δE = 0. (54)
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When linearized, Poisson’s equation (35) and (38), respectively, give

∂δEz

∂z
= 4πe(no2γo2 − no1γo1) + 4πe(γo2δn2 − γo1δn1)

+ 4πe(no2uo2γ
3
o2δu2 − no1uo1γ

3
o1δu1), (55)(

α2 ∂2

∂z2
+ 3α

2rh

∂

∂z
− ∂2

∂t2
+ 1

(2rh)2

)
δE = 4πeα

(
no2γo2

∂δv2

∂t
− no1γo1

∂δv1

∂t

)
. (56)

6 Dispersion Relation

We restrict our consideration to effects on a local scale for which the distance from the
horizon does not vary significantly. We apply a local (or mean-field) approximation for the
lapse function α(z) and hence for the equilibrium fields and fluid quantities. If the plasma
is situated relatively close to the event horizon, α2  1, then a relatively small change in
distance z will make a significant difference to the magnitude of α. Thus it is important to
choose a sufficiently small range in z so that α(z) does not vary much.

We consider thin layers in the eẑ direction, each layer with its own αo, where αo is some
mean value of α within a particular layer. By considering a large number of layers within a
chosen range of αo values, a more complete picture can then be built up. However, such a
local approximation imposes a restriction on the magnitude of the wavelength and, hence,
on the wave number k. It is assumed that the wavelength is small in comparison with the
range over which the equilibrium quantities change significantly. Then the wavelength must
be smaller in magnitude than the scale of the gradient of the lapse function α, i.e.,

λ <

(
∂α

∂z

)−1

= 2rh � ζ5.896 × 105 cm,

or, equivalently,

k >
2π

2rh

� ζ−11.067 × 10−5 cm−1, 1 ≤ ζ ≤ 1.5,

for a black hole of mass ∼1M�. The value for ζ = 1.5 corresponds to the extremal SdS
black hole, while the value for ζ = 1 corresponds to the Schwarzschild black hole.

The hydrodynamical approach used in this work has some disadvantages, such as it is
essentially a bulk, fluid approach. So the microscopic behavior of the two-fluid plasma is
treated in a somewhat approximate manner via the equation of state. It means that the results
are really only strictly valid in the long wavelength limit. However, the restriction, imposed
by the local approximation, on the wavelength is not too severe and permits the consideration
of intermediate to long wavelengths so that the small k limit is still valid.

The unperturbed field and fluid quantities are assumed not to be constant with respect to
α(z). Then, using the local approximation for α, the derivatives of the equilibrium quantities
can be evaluated at each layer for a given αo. In the local approximation for α, α � αo is
valid within a particular layer. Hence, the unperturbed fields and fluid quantities and their
derivatives, which are functions of α, take on their corresponding “mean-field” values for a
given α0. Then the coefficients in (51), (54), and (55) become constants within each layer,
evaluated at each fixed mean-field value, α = αo. So it is possible to Fourier transform the



Int J Theor Phys (2009) 48: 1717–1735 1727

equations with respect to z, using plane-wave-type solutions for the perturbations of the
form ∼ei(kz−ωt) for each αo layer.

When Fourier transformed, (54) and (56) turn out to be

ω

(
αokuos − ω + iuos

2rh

+ αoqsγosnosBo

ρos

)

× δvs − iαo

qsγosnos

ρos

(
αokuos − ω − iuos

2rh

)
δE = 0, (57)

δE = i4πeαoω(no2γo2δv2 − no1γo1δv1)

αok(αok − i3/2rh) − ω2 − 1/(2rh)2
. (58)

The dispersion relation for the transverse electromagnetic wave modes may be put in the
form

[
K±

(
K± ± i

2rh

)
− ω2 + 1

(2rh)2

]

= α2
o

{
ω2

p1(ω − uo1K±)

(uo1K∓ − ω − αoωc1)
+ ω2

p2(ω − uo2K±)

(uo2K∓ − ω + αoωc2)

}
(59)

for either the electron-positron or electron-ion plasma, where K± = αok ± i/2rh, ωcs =
eγosnosBo/ρos and ωps = √

4πe2γ 2
osn

2
os/ρos . Like the plasma frequency ωps , the cyclotron

frequency ωcs is frame independent. Although the fluid quantities are measured in the fluid
frame, the field Bo is measured in the FIDO frame. So, the factors of γos do not cancel out
explicitly. The transformation Bo → γosBo boosts the fluid frame for either fluid and thereby
cancels the γos factors. The “+” and “−” denote the left L and right R modes, respectively.
The dispersion relation for the L mode is obtained by taking the complex conjugate of the
dispersion relation for the R mode. Both of the two modes have the same dispersion relation
in the special relativistic case.

7 Numerical Solution of Modes

We have to solve the dispersion relation (59) in order to determine all the physically mean-
ingful modes for the transverse waves. But the dispersion relation is complicated enough,
even in the simplest cases for the electron-positron plasma where both species are assumed
to have the same equilibrium parameters, and an analytical solution is cumbersome and un-
profitable. We therefore solve the dispersion relation numerically and for this purpose we
put it in the form of a matrix equation as follows:

(A − kI)X = 0, (60)

where the eigenvalue is chosen to be the wave number k, the eigenvector X is given by the
relevant set of perturbations, and I is the identity matrix.

To write the perturbation equations in an appropriate form, we introduce the following
set of dimensionless variables:

ω̃ = ω

αoω∗
, k̃ = kc

ω∗
, kh = 1

2rhω∗
,
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δũs = δus

uos

, ṽs = δvs

uos

, δñs = δns

nos

,

δB̃ = δB

Bo

, Ẽ = δE

Bo

, δẼz = δEz

Bo

.

(61)

For an electron-positron plasma, ωp1 = ωp2 and ωc1 = ωc2, since the choice of input para-
meters is the same for each fluid. Hence, ω∗ is defined as

ω∗ =
{

ωc Alfvén modes,

(2ω2
p + ω2

c )
1
2 high frequency modes,

(62)

where ωp = √
ωp1ωp2 and ωc = √

ωc1ωc2. However, for the case of an electron-ion plasma,
the plasma frequency and the cyclotron frequency are different for each fluid, and so the
choice of ω∗ is a more complicated matter. For simplicity, it is assumed that

ω∗ =
{

1√
2
(ω2

c1 + ω2
c2)

1
2 Alfvén modes,

(ω2
∗1 + ω2

∗2)
1
2 high frequency modes,

(63)

where ω2∗s = (2ω2
ps + ω2

cs). These chosen values for ω∗ reduce to the special relativistic
cutoffs in the zero gravity limit for an electron-positron plasma. The cutoffs, in the special
relativistic case, are determined by the dispersion relation in view of the fact that the so-
lutions to the dispersion relation are physical (i.e., Re(k) > 0) only for certain frequency
regimes. Since the dispersion relations cannot be handled analytically, it is difficult to deter-
mine the cutoffs in the case including gravity. Other similar combinations for ω∗ make only
a difference of a scale factor to the form of the results as ω∗ is really only a scale factor.

We write the dimensionless eigenvector for the transverse set of equations as

X̃transverse =

⎡
⎢⎢⎣

δṽ1

δṽ2

δB̃

δẼ

⎤
⎥⎥⎦ . (64)

When linearized and Fourier transformed, equations (36) and (37) turn out to be
(

k − i

2rhαo

)
δE + iω

αo

δB = 0, (65)

and

iω

αo

δE =
(

k − i

2rhαo

)
δB + 4πe(γo2no2δv2 − γo1no1δv1). (66)

Using (61), we write (57), (65), and (66) in the dimensionless form as follows:

k̃δṽs =
(

ω̃

uos

−
(qs

e

) ωcs

uosω∗
− ikh

αo

)
δṽs +

(qs

e

) ωcs

uosω∗
δB̃ − i

(qs

e

) ωcs

uosω∗
δẼ, (67)

k̃δẼ = −iω̃δB̃ + ikh

αo

δẼ, (68)

k̃δB̃ = uo1

ω2
p1

ωc1ω∗
δṽ1 − uo2

ω2
p2

ωc2ω∗
δṽ2 + ikh

αo

δB̃ + iω̃δẼ. (69)

These are the equations in the required form to be used as input to (60).
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8 Results

We have carried out the numerical analysis by using the well known MATLAB. We have
considered both the electron-positron plasma and the electron-ion plasma. The limiting hori-
zon values for the magnetic field and the fluid parameters are chosen as follows. For the
electron-positron plasma, the horizon values are taken to be

nhs = 1018 cm−3, Ths = 1010 K, Bh = 3 × 106 G, and γg = 4

3
. (70)

For the electron-ion plasma, the ions are essentially nonrelativistic, and the limiting hori-
zon values are chosen to be

nh1 = 1018 cm−3, Th1 = 1010 K, nh2 = 1015 cm−3, Th2 = 1012 K. (71)

The limiting horizon value for the equilibrium magnetic field has the same value as it has
for the electron-positron case. The limiting horizon temperature for each species has been
taken as derived by Colpi et al. [59] from studies of two temperature models of spherical
accretion onto black holes. For the limiting horizon densities and the limiting horizon field,
simply arbitrarily those values have been chosen which are consistent with the current ideas.
The gas constant and the mass of the black hole have been taken as

γg = 4

3
, M = 5M�. (72)

8.1 Alfvén Modes

8.1.1 Electron-Positron Plasma

For the ultrarelativistic electron-positron plasma in the special relativistic case, only one real
Alfvén mode is found to exist [62], while for the Schwarzschild case there are two Alfvén
modes [7]. Our study in the SdS spacetime shows four modes to exist for electron-positron
plasma. The first two modes, shown in the Fig. 1 are drawn from the dispersion relation of
(67), (68) and (69) and are complex conjugate of each other. They are equivalent to that of
Buzzi et al. [7] in this case. The third mode is damped mode similar to the damped mode
of Fig. 1 with larger damping rate and the fourth mode is equivalent to the third mode
with opposite in sense and shows growth. These four modes coalesce into a single mode
in the special relativistic limit, giving the result of [62]. Since we are using the convention
eikz = ei[Re(k)+i Im(k)]z, the damping corresponds to Im(k̃) > 0 and growth to Im(k̃) < 0.

8.1.2 Electron-Ion Plasma

In this case there exist four modes, two of which are respectively growth and damped as
shown in Figs. 2 and 3. The other two modes, complex conjugate to each other, are equiv-
alent to the electron-positron modes shown in Fig. 1 but have larger amount of damping
and growth rates. For the first two modes the differences in the magnitudes of the ωc1 and
ωc2 apparently lead to take the frequencies from their negative (and therefore unphysical)
values for the electron-positron case to positive physical values for the electron-ion case.
These changes are thus because of the difference in mass and density factors as between the
positrons and ions. It is evident that the growth and damping rates are independent of the
frequency, but depended only on the distance from the black hole horizon through αo.
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Fig. 1 Top: Real part of the
Alfvén growth and damping
modes for the electron-positron
plasma. Center: Imaginary part
of the growth mode. Bottom:
Imaginary part of the damped
mode

8.2 High Frequency Transverse Modes

8.2.1 Electron-Positron Plasma

In this case there are four high frequency electromagnetic modes. Two of these modes,
shown in Fig. 4, have real parts equivalent to the real part of Fig. 1. The left (imaginary)
mode in Fig. 4 is damped, while the right one is damped for higher frequency and αo >

0.2 and growth for αo < 0.2 and lower frequencies. It then appears, at a distance from the
horizon corresponding to αo < 0.2, that energy is no longer fed into wave mode by the
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Fig. 2 Left: Real part of the Alfvén growth mode for the electron-ion plasma. Right: Imaginary part of the
growth mode

Fig. 3 Left: Real part of Alfvén damped mode for the electron-ion plasma. Right: Imaginary part of the
damped mode

Fig. 4 Left: Imaginary part of high frequency damped mode. Right: Imaginary part of high frequency mode
showing both damping and growth
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Fig. 5 Left: Real part of high frequency mode for the electron-positron plasma. Right: Imaginary part of high
frequency damping and growth mode

Fig. 6 Left: Real part of high frequency mode for the electron-positron plasma. Right: Imaginary part of high
frequency growth mode

gravitational field but begins to be drained from the waves. The third mode, shown in Fig. 5,
is damped for most of the frequency domain and αo > 0.2, but shows growth for lower
frequencies and αo < 0.2. Near to the event horizon, below about αo ∼ 0.2, it becomes
a growth mode for all frequencies. The fourth mode, shown in Fig. 6, is similar to third
mode but shows a growth for all the frequency domain. These four modes reduce to the
three modes of Buzzi et al. [7] in the Schwarzschild case, while they coalesce into only
one purely high frequency mode in the special relativistic case [62] for the ultrarelativistic
electron-positron plasma.

8.2.2 Electron-Ion Plasma

Like the electron-positron plasma, the electron-ion plasma admits four high frequency
modes. The first two modes are similar to the modes for electron-positron case shown in
Fig. 4, with a large amount of growth and damping rates. The third and fourth modes are
similar to the modes shown in Figs. 5 and 6, respectively, with larger amount of damping
and growth. The third mode is growth for higher frequency and αo > 0.1, while it is damped
for lower frequency and αo → 0. The fourth mode is a growth mode and is stable for all
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frequencies and at all distances from the event horizon. Unlike the corresponding Alfvén
modes, the growth and decay rates obviously depend on frequency. The four modes reduce
to three modes in the Schwarzschild case [7].

9 Concluding Remarks

The study of this paper concerns exclusively the investigation, within the local approxima-
tion, of Alfvén and high frequency transverse electromagnetic waves in a two-plasma sur-
rounding the Schwarzschild black hole in the de Sitter space. Using a local approximation,
we have derived the dispersion relations for the Alfvén and high frequency electromagnetic
waves, and solved it numerically as an analytical solution is unprofitable and not illumi-
nating. In the limit of zero gravity our results reduce to the special relativistic results [62]
where only one purely real mode was found to exist for both the Alfvén and high frequency
electromagnetic waves. In contrast to the special relativistic case, new modes (damped or
growth) arise in the black hole spacetime. This is because of the black hole’s gravitational
field.

The damping and growth rates for the electron-positron plasma are smaller in general, by
several orders of magnitude, compared with the real components of the wave number. How-
ever, there exist modes for the electron-ion plasma for which the damping and growth rates
are significant for the Alfvén waves, in particular. For the Alfvén waves, the damping and
growth rates are obviously frequency independent, but are dependent on the radial distance
from the horizon as denoted by the mean value of the lapse function αo. This is of course not
the case for the high frequency waves for which the rate of damping or growth is dependent
on both frequency and radial distance from the horizon.

Presence of damped modes demonstrates, at least in this approximation, that energy is
being drained from some of the waves by the gravitational field. Since the majority of the
modes are growth rates, it indicates that the gravitational field is, in fact, feeding energy into
the waves.

In the limit �2 → ∞ our study provides the results for the Schwarzschild black hole
case [7], while for M = 0 the results reduce to those of the pure de Sitter space [63]. When
M2 = 27�2, the results go for the well known Nariai spacetime. If �2 is replaced by −�2,
our study gives results for the interesting AdS black holes which have received interest in
the AdS/CFT correspondence [53–56] as well as in the context of brane-world scenarios
[57, 58]. In fact, development in string/M theory have greatly stimulated the study of black
holes in AdS space. Moreover, recent astrophysical observations indicate that our universe
is in a phase of accelerating expansion associated with which is a positive cosmological
constant, and the universe therefore might approach a de Sitter phase in the far future [21,
24, 25, 64–67]. In view of these reasons, aspects of black holes in the de Sitter space might
be of interest, and our study of two-fluid plasma in this paper near the event horizon of the
Schwarzschild-de Sitter black hole is thus well motivated.
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